인기 질문답변
QANDA의 1억 명 이상의 친구들이 자주 묻는 질문과 답변을 확인하고 함께 공부해보세요!
[0334~0339] 다음 식을 계산하시오.
0334 \(x(3x+4y)-(x^2y-2xy^2)\div y\)
0335 \((x^2y-8xy^2)\div x+(3y-2x)\times(-3y)\)
0336 \((8x^4-12x^2y)\div(-2x)^2+(6x^2-2xy)\div x\)
0337 \((12a^2b-9ab)\div(-3ab)+(4a^4-a^3)\div(-a)^3\)
0338 \((14x^2y-21xy^2)\div(\□\□\□\□\□)\)
Step1. 식 0334 단순화
x(3x+4y)를 전개하고
수학

서술형2. 원 \( (x-2)^2 + (y+1)^2 = 10 \) 위를 움직이는 두 점 P, Q에
대하여 점 P를 y축에 대하여 대칭 이동시킨 점을 P',
점 Q를 직선 \( y=x \)에 대하여 대칭 이동시킨 점을 Q'라 하자.
선분 P'Q'의 길이의 □□□□□ [ □□□ ]
Step1. 대칭 이동 후 두 원 찾기
P를 y축에 대하여 대칭 이동한 점 P'는 중심이 (-2, -1)이고 반지름이 √10
수학

60. -4 ≤ x ≤ 4 에서 이차함수 \(y = x^2 - 4|x| + 5\) 의
최댓값과 최솟값의 합을 구하□□□.
Step1. 절댓값으로 구간 분할
x≥0인 구간에서는 |x
수학

2-1 분수 \(\frac{x}{420}\) 를 소수로 나타내면 유한소수가 되고,
기약분수로 나타내면 \(\frac{1}{y}\) 이 된다고 할 때, \(x-y\)의 값을 구하
시오. (단, \(y\)는 \(10 < y < 25\)인 자연수) [7점]
풀이과정
1단계 \(x\)의 조건 구하기 [2점]
2단계 \(x\), \(y\)의 값 구하 □□□□□ [□□□□]
Step1. 420 의 소인수분해
420 을 소인수분해
수학

4. 준서네 반에서 음악 실기 점수를 조사한 결과 남학생
18명과 여학생 12명의 점수의 평균은 7점으로 서로 같
고, 표준편차는 각각 3점, 2점이었다. 준서네 반 학생
30명의 음악 실기 점수의 평균과 표□□□□□.
Step1. 각 집단의 분산 및 제곱합 구하기
남학생 표준편차 \(3\)과 평균 \(7\)을 이용하여 분산을 \(9\)로 구하고, \( E(X^2) = 49 + 9 = 58 \)이
수학

G 54b
(6) \(\frac{1}{3} - \frac{1}{4} + 4\frac{5}{12} = \) □
(7) \(\frac{1}{3} - \frac{1}{4} - 4\frac{5}{12} = \) □
(8) \(\frac{1}{3} + \frac{1}{4} - 4\frac{5}{12} = \) □
(9) \(-\frac{1}{3} + \frac{1}{4} + 4\frac{5}{12} = \) □
(10) \(-\frac{1}{3} + \frac{1}{4} - 4\frac{5}{12} = \) □
11 □□□□□
Step1. 대분수를 가분수로 변환
4
수학

2008(나)/수능(홀) 26
C38 *
함수 \(f(x) = 2^x\)의 그래프를 \(x\)축 방향으로 \(m\)만큼, \(y\)축 방향으로 \(n\)
만큼 평행이동시키면 함수 \(y = g(x)\)의 그래프가 되고, 이 평행이동
에 의하여 점 A(1, \(f(1)\))이 점 A'(3, \(g(3)\))으로 이동된다. 함수
\(y = g(x)\)의 그래프가 점 (0, 1)을 지날 때, \(m+n\)의 값은(□□□□□)
Step1. 주어진 점의 이동으로 m을 찾기
점 A(1, 2)를 A'(
수학

9. 다음 중 어법상 옳은 문장은?9)
① Johnny never has been to Australia.
② Kathy has learned Chinese for five years.
③ Melissa has visited her uncle last weekend.
④ Simon has stayed in Seoul two weeks ago.
⑤ Jim has yet finished lunch at the restaurant.
10. 다음 중 어법상 어색한 문장은?10)
① I have been to Hong Kong.
② I have never made so much money.
③ He has gone to South Africa last year.
④ He invented that machine in 1990.
⑤ She has been in Seoul for a month.
11. 다음 중 어법상 옳은 문장은?11)
① How long does it has rained?
② Jack has stayed here for a month.
③ He doesn't have eaten anything all day.
④ She has sent an e-mail to me yesterday.
⑤ We have gone to the bank three days ago.
12. 다음 중 어법상 어색한 문장은?12)
① I have eaten at the restaurant once.
② Sam and I have seen the □□□□□.
③ □□□□□.
④ □□□□□.
⑤ □□□□□.
Step1. 시점 부사와 현재완료의 호응 여부 확인
과거 시점을 나타내는 표현(예: last we
영어

다음 중 옳지 않은 것을 모두 고르면? (정답 2개)
① \(x\)명의 학생 중 10%가 감소하였을 때 남은 학생 수
\( \implies \) \(0.9x\)명
② 10자루에 \(a\)원인 연필 한 자루의 가격 \( \implies \) \(\frac{a}{10}\)원
③ 가로의 길이가 \(a\)cm, 세로의 길이가 \(b\)cm인 직사각형
의 둘레의 길이 \( \implies \) \((4a+b)\)cm
④ 시속 \(a\)km로 3시간 동안 달린 거리 \( \implies \) \(3a\)km
⑤ 십의 자리의 □□□□□
문제 풀이
(1) x명 중 10%가 감소 → 남은 학생 수는 (x-0.1x)=0.9x명으로 옳습니다.
(2) 10자루에 a원이면 한 자루의 가격은 a/10원이므로 옳습니다.
(3) 가로가 a, 세로가 b인 직사각형의 둘레는 2(a+b)이므로
수학

44 양수 \(N\)에 대하여 \(\log N\)의 정수 부분을 \(f(N)\)이라 할 때,
\(f(9) + f(99) + f(999)\)의 □□□□□.
로그가 10진법이라고 가정하면, log 10(9)는 대략 0.95이므로 정수 부분은 0, log 10(99)는 대략 1.99이므로 정수 부분은 1, log
수학

8 [2023년 시행 6월 평가원 확률과 통계 #28]
정해 \(X = \{1, 2, 3, 4, 5\}\)에 대하여 다음 조건을 만족시키는 함수 \(f: X \to X\)의 개수는?
(가) \(f(1) \times f(3) \times f(5)\)는 홀수이다.
(나) \(f(2) < f(4)\)
(다) 함수 \(f\)의 치역의 원소의 개수는 3이다
□□□□□
Step1. 치역으로 가능한 세 원소의 경우를 구분한다
홀수만 3개인
수학
