인기 질문답변
QANDA의 1억 명 이상의 친구들이 자주 묻는 질문과 답변을 확인하고 함께 공부해보세요!
8 오른쪽 그림은 A, B, C 세 종류의 조각 타일을 빈틈없이 이어 붙인 벽면의 일부이다. 정사각형 A의 넓이는 3, 직사각형 B의 넓이는 \( \sqrt{10} \) 일 때, 정사각형 C의 넓이를 구하고, 그 풀이 과정을 쓰시오. 풀이 정사각형 A의 한 변의 길이는 \( \sqrt{3} \) 직사각형 B의 넓이는 □□□□□
Step1. 정사각형 A의 한 변 길이 확인 정사각형 A의
수학
thumbnail
다음 두 연립방정식의 해가 서로 같을 때, 상수 \(a\), \(b\)에 대하여 \(ab\)의 값은? \[ \begin{cases} 2x - 5y = 10 \\ 4(ax - 6) = y \end{cases} \] \[ \begin{cases} x - 2by = 3 \\ -8(x - 1) + 11y = 4 \end{cases} \] □ □ □ □ □
Step1. 첫 번째 연립방정식의 해를 a로 표현 첫 번째 연립방정식
수학
thumbnail
10 오른쪽 그림과 같은 부채꼴에 서 색칠한 부분의 둘레의 길이 와 넓이를 차례로 구□□□. 둘레|
Step1. 호 길이 구하기 90° (1/4원)에 해당하는 외부 반지름 5cm, 내부 반지름 2cm의 호 길이를 구합니다. \( 외부 호 길이 = \frac{1}{4} \times 2\pi \times 5 = \frac{5\pi}{2} \)
수학
thumbnail
17. 모서리의 길이가 5인 정육면체의 한 꼭짓점 에 서 BH에 내린 수선의 발을 N이라고 하자. ∠NDH=x°라고 할 때, sinx × cosx 의 값은? A D B C x 5 N 5 E H F G $\frac{\sqrt{2}}{3}$ ① $\frac{\sqrt{3}}{3}$ ②
Step1. 점 N의 좌표 구하기 정육면체를 좌표계에 배치하고, 선분 BH를 매개변수로 나타낸 뒤 D에서 BH로 내린 수선의
수학
thumbnail
0185 그림은 어떤 다항식 \(f(x)\)에 대하여 조립제법을 한 것이다. 이 다항식 \(f(x)\)를 \(x-2\)로 나누었을 때의 나머지는? \begin{tabular}{|c|c|c|c|c|} \hline -1 & □ & □ & □ & □ \\ \hline 2 & □ & □ & □ & 5 \\ \hline -2 & □ & □ & -4 & \\ \hline \multicolumn{2}{|r}{1} & -3 \\ \hline \end{tabular} ① -9 □ □ □ □
나머지정리에 따르면 다항식 f(x)를 (x - 2)로 나누었을 때의 나머지는 f(2)가 된다. 조립제법의 마지막 수치나 직접 f(2)
수학
thumbnail
198 오른쪽 그림과 같이 가로의 길이가 15 cm, 세로의 길이가 12 cm인 직사각형 모양의 종이가 있다. 이 종이의 네 귀퉁이에 서 한 변의 길이가 \(x\) cm인 정사각형을 잘라 내고 점선을 따라 접어서 부피가 176 cm³인 뚜껑이 없는 직육면체 모양 □□□□
Step1. 잘라낸 정사각형을 기준으로 밑면 크기 결정*
수학
thumbnail
0482 B- 오른쪽 그림에서 ∠A = ∠CBD, ∠BCA = ∠D 일 때, \(\overline{AB}\)의 길이를 구하시오.
Step1. 각 조건으로부터 원 위의 점들 유추 ∠A = ∠CBD와 ∠BC
수학
thumbnail
18 오른쪽 그림에서 점 I는 △ABC의 내심이다. ∠AIB=110°. ∠IAC=40°일 때, ∠x □□□□□.
Step1. ∠AIB로부터 ∠C 구하기 ∠AIB=
수학
thumbnail
H38 2017(나)/수능(홀) 25 함수 \(f(x) = \frac{1}{2}x + 2\)에 대하여 \(\sum_{k=1}^{15} f(2k)\)의 값을 구□□□□□. (□□□□)
f(2k)는 x 대신 2k를 대입하여 다음과 같이 계산할 수 있습니다. \( f(2k) = \frac{1}{2}(2k) + 2 = k + 2 \) 따라서 구하고자 하는 합은 다음과 같습니다. \( \sum_{k=1}^{15} f(2k) = \sum_{k=1}^{15} (k + 2) = \sum_{k=1}^{15} k + \sum_{k=1}^{15} 2 \)
수학
thumbnail
01 삼차방정식 \(x^3 + (2a+1)x^2 + ax - a = 0\)이 중근과 다른 한 실근을 갖도록 하는 모든 실수 \(a\)의 □□□
Step1. 중근 조건 설정 중근이 되려면 원방정식과 미분방정식이
수학
thumbnail
03. 표는 원소 X와 Y로 이루어진 기체 (가)~(다)에 대한 자료이다. (가)~(다)의 분자당 원자 수는 4 이하이다. | 기체 | (가) \(X_□\) | (나) \(X_□\) | (다) | |---|---|---|---| | Y의 질량 (상댓값) | 1 | 4 | 2 | | X의 질량 | | | | | 기체의 질량(g) | 44 | 23 | \(a\) □□ | | 전체 분자의 양(mol) (상댓값) | 4 | 2 | 3 | | 전체 원자의 양(mol) (상댓값) | 2 | 1 | 2 | 이에 대한 설명으로 옳은 것만을 [보기]에서 있는 대로 고른 것은? (단, X와 Y는 임의의 원소 기호이다.) [보기] ㄱ. (다)의 분자식은 \(X_2Y_2\)이다. ㄴ. \(a = 45\)이다. ㄷ. 전체 질량에서 X가 차지하는 □□□□□ L □□□□□ \(X = □\) \(X = □\)
Step1. 분자식 가정 후 질량비와 주어진 자료 대조 각 기체 (가), (나), (다)에
과학
thumbnail