인기 질문답변
QANDA의 1억 명 이상의 친구들이 자주 묻는 질문과 답변을 확인하고 함께 공부해보세요!
0442 □ 서술형 실수 전체의 집합에서 정의된 함수 \(f\)에 대하여 \(f(3x-1) = 6x+1\)이다. \(f^{-1}(x) = ax+b\)일 때, \(a-b\)의 값 을 구하시오 □□□□
Step1. f(x)의 식 구하기 3x-1
수학
thumbnail
오른쪽 그림과 같이 원의 중심 O에서 현 AB에 내린 수선의 발을 M, $\overline{OM}$의 연장선이 원과 만나는 점을 C라고 할 때, x의 값을 구하시오. 풀이 $\overline{BM}$=$\overline{AM}$=8cm이고, $\overline{OM}$=x-5 (cm)이므로 직각삼각 형 OMB에 (x-5)²+8²=□□□
Step1. 삼각형 식 세우기 직각삼각형 OMB에서 OM과 BM 길이
수학
thumbnail
5 △ABC에서 $\overline{AB}$와 $\overline{BC}$의 길이가 주어졌을 때, 다음 보기 중 △ABC가 하나로 정해지기 위 해 필요한 나머지 한 조건이 될 수 있는 것을 모두 고르시오. (단, \(AB+BC>CA\)이고, $\overline{CA}$가 가장 긴 변이 □□□) 보기 □□□□□
Step1. 두 변과 사이 낀 각이 필요한지 확인 AB와 BC가 주어
수학
thumbnail
6. 두 함수 \(f(x) = |x+3|\), \(g(x) = 2x + a\)에 대하여 함수 \(f(x)g(x)\)가 실수 전체의 집합에서 미분가능할 때, 상수 \(a\)의 값은? □) [3점] [2021년 10월 07. □□□□□
Step1. 미분가능성 점검
수학
thumbnail
24 최고차항의 계수가 1인 두 다항함수 \(f(x)\), \(g(x)\)가 모든 실수 \(x\)에 대하여 \(f(-x) = -f(x)\), \(g(-x) = -g(x)\) 를 만족시킨다. 두 함수 \(f(x)\), \(g(x)\)에 대하여 \[ \lim_{x \to \infty} \frac{f'(x)}{x^2 g'(x)} = 3, \quad \lim_{x \to 0} \frac{f(x)g(x)}{x^2} = -1 \] 일 때, \(f(2□□□□□[\)□□□□□\(\)]\)
Step1. 함수의 차수 결정 f(-x)=-f(x), g(-x)=-g(x
수학
thumbnail
13. 집합 \(X = \{1, 2, 3, 4, 5\}\)에 대하여 \(X\)에서 \(X\)로의 세 함수 \(f\), \(g\), \(h\)가 다음 조건을 만족시킨다. (가) \(f\)는 항등함수이고 \(g\)는 상수함수이다. (나) 집합 \(X\)의 모든 원소 \(x\)에 대하여 \[f(x) + g(x) + h(x) = 7\] 이다. \(g(3) + h(\□) = \□\) \[ \□ \]
f(x)는 항등함수이므로 f(x)=x이고, g(x)는 상수함수이므로 모든 x에 대해 g(x)=c라고 하자. 그러면 모든 x에 대하여 \( x + c + h(x) = 7 \)
수학
thumbnail
10 다음 일차부등식을 푸시오. (1) \(\frac{1}{2} - \frac{1}{4}x \ge \frac{1}{4}x + 1\) (2) \(\frac{x-1}{2} + \frac{x}{3} > \frac{1}{3}\) (3) \(\frac{2x □ □ □ □ □ □}{□ □ □ □ □ □}\)
Step1. 문제 (1) 양변 정리 좌변에
수학
thumbnail
0219 중 가로, 세로의 길이가 각각 65cm, 52cm인 직사각형 모 양의 종이에 크기가 같은 정사각형 모양의 색종이를 빈틈 없이 붙이려고 한다. 색종이를 되도록 적게 사용하려고 할 때, 필요한 색종이의 수는? □□□□ □□□□ □□□□
최대공약수를 이용해 각 변을 나눌 수 있는 한 변의 길이가 가장 긴 정사각형을 찾는다. \(65\)와 \(52\)의 최대공약수는 \(13\)이므로, 한 변의 길이가 \(13\)cm인 정사각형을 사용한다. 따라서 가로 \(65\)
수학
thumbnail
22 기약분수 \( \frac{x}{15} \) 를 소수로 나타내면 0.5333…이고 기약분수 \( \frac{y}{33} \) 를 소수로 나타내면 2.0303…일 때, \( x+y \) 의 값은? (단, \( x, y \) 는 자연수) ① 6 □□□□□
Step1. x/15에서 x 결정 소수 0.53
수학
thumbnail
0281 세 자연수 \(2 \times x\), \(3 \times x\), \(6 \times x\)의 최소공배수가 72일 때, 세 자연수의 합은? ① 110 □□□ ② 121 □□□ ③ 132
이 문제에서는 최소공배수 개념을 사용하여 \(2x\), \(3x\), \(6x\)의 최소공배수를 72로 맞추어야 합니다. 먼저 \(2x, 3x, 6x\)의 최소공배수는 일반적으로 \(6x\)가 됩니다. 따
수학
thumbnail
3 [24009-0121] 실수 \(k\)에 대하여 삼차방정식 \(\frac{1}{3}x^3 - \frac{1}{2}x^2 + k = 0\)의 서로 다른 실근의 개수를 \(f(k)\)라 하자. 최고차항의 계수가 1인 이차함수 \(g(x)\)에 대하여 함수 \(f(x)g(x)\)가 실수 전체의 집합에서 연속일 때, \(f(2) + g(2)\)의 값은? ①. □□
Step1. 삼차방정식의 실근 개수 표현하기
수학
thumbnail