Câu hỏi

Hiểu Câu hỏi
Câu 9. Cho hàm số $f(x)$ có đạo hàm $f'(x) = {x^2}{(x + 2)^4}{(x + 4)^3}[{x^2} + 2(m + 3)x + 6m + 18]$. Có tất cả bao nhiêu giá trị nguyên của $m$ để hàm số $f(x)$ có đúng một điểm cực trị?
Phương pháp Giải bài
Để hàm có đúng một điểm cực trị, ta cần f'(x) chỉ đổi dấu đúng một lần. Bậc của mỗi nghiệm trong f'(x) quyết định sự đổi dấu: nghiệm bậc lẻ tạo đổi dấu, bậc chẵn thì không.
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5

Step1. Tìm các nghiệm của f'(x)
f'(x) bằng 0 khi x = 0

Step1. Xác định những giá trị u để f'(u) = 0
Từ f'(u) = (u-2)^2

Step1. Thiết lập phương trình y'(x)=0
Ta có y'(x) = f'(g(x

Step1. Xác định g'(x) = 0
Ta có g'(x) = f'(x^3 − 3x^2 + m) ⋅ (3x^

Step1. Xét các nghiệm cố định
Ba nhân tử x^2, (x+2)^4, (x+4)^3