Câu hỏi

Hiểu Câu hỏi
Câu 4: Cho \(lim_{x\to 1}\frac{f(x)+1}{x-1}=-1\). Tính \(I=lim_{x\to 1}\frac{xf(x)+1}{x-1}\)
A. \(I=2\)
B. \(I=-4\)
C. \(I=4\)
D. \(I=-2\)
Phương pháp Giải bài
Để xác định giới hạn, chúng ta sử dụng đạo hàm tại điểm \(x=1\).
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5

Vì khi x tiến đến -1 thì f(x) tiến đến 4, trong khi (x+1)^4 lại tiến dần về 0 và

Step1. Rút gọn và xét giới hạn cho biểu thức (a)
Với 1/x –

Ta có \(\lim_{x\to -1} f(x) = 4\). Vì \((x+1)^4\) tiến về \(0\) và luôn dương khi \(x\) gần \(-1\), nên mẫu số tiến về \(0^+\).

Step1. Tìm giá trị f(1) và f'(1)
Từ điều

Để tính giới hạn \(\lim_{x \to -2} \frac{x+1}{(x+2)^2}\), ta xét giá trị của tử số và mẫu số khi \(x\) tiến gần đến \(-2\):
• Tử số \(x+1\) tiến gần \(-1\).
• Mẫu số \((x+2)^2\) tiến gần \(0\) nhưng luôn dươ