Câu hỏi

Hiểu Câu hỏi
Câu 40: Cho hàm số \(y = x^4 + bx^3 + cx^2 + dx + e\) (\(b, c, d, e \in R\)) có các giá trị cực trị là 1, 4 và 9. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(g(x) = \frac{f'(x)}{\sqrt{f(x)}}\) với trục hoành bằng
A. 4.
B. 6.
C. 2.
D. 8.
Phương pháp Giải bài
Ta sử dụng Tích phân của g(x) để tìm diện tích, vì ∫[f'(x)/√f(x)] dx = 2√f(x). Lưu ý đến dấu của f'(x) để lấy giá trị tuyệt đối khi tính diện tích.
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5