Câu hỏi

Hiểu Câu hỏi
B1: Tinh:
A = cos
2
10
°
+ cos
2
35
°
+ cos
2
80
°
+ cos
2
55
°
B = & Sin
2
30
°
+ Sin
2
54
°
+ Sin
2
60
°
+ Sin
2
34
°
+ Sin
2
38
°
+ Sin
2
52
°
C = cos
2
10
°
+ cos
2
20
°
+...+ cos
2
80
°
Phương pháp Giải bài
Để tính tổng bình phương các hàm lượng giác, ta dựa trên tính chất góc phụ và công thức cos^2(θ) = (1 + cos(2θ))/2. Phép cộng theo cặp hoặc áp dụng công thức chuỗi giúp tìm nhanh tổng.
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5

Step1. Tính A
Nhóm các cặp góc 10° và 80°,

Step1. Tính A
Nhóm các giá trị sin^2(30°), sin^2(40°), sin^2(50°), sin^2(6

Step1. Liệt kê công thức lượng giác cần dùng
Ta dùng:
\(\sin^2 x + \cos^2 x = 1\)
\(\cos(2x) = \cos^2 x - \sin^2 x\)
\(\tan(x) = \frac{\sin x}{\cos x}\)

Step1. Tính tổng A bằng công thức tổng cos
Sử dụn

Step1. Tách cặp góc trong biểu thức A
Gom cos²(20°) với c