Câu hỏi

Hiểu Câu hỏi
Câu 6. Cho biết , . Giá trị của bằng
A. .
B. .
C. .
D. .
Phương pháp Giải bài
Ta có thể bình phương hai vế của phương trình và sử dụng đẳng_thức sin^2α + cos^2α = 1 để tìm ra tan α.
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5

Ta có phương trình 3 − = 1.
Giả sử . Khi đó (do 0° < α < 90° nên dương). Thay vào phương trình:
Biế

Đặt và . Phương trình cho . Kết hợp với , ta có:

Step1. Bình phương hai vế của phương trình
Bình phương 3co

Step1. Tìm sinα và tanα
Vì cosα = -4/5 trong khoảng π < α <

Step1. Tìm sin α và cos α
Giả sử sin α = 4/5 và cos α