질문

문제 이해
양수 \(t\)에 대하여 \(\log t\)의 정수 부분과 소수 부분을 각각 \(f(t)\), \(g(t)\)라 하자. 자연수 \(n\)에 대하여
\[ f(t) = 9n \left[ g(t) - \frac{1}{3} \right]^2 - n \]
을 만족시키는 서로 다른 모든 \(f(t)\)의 합을 \(a_n\)이라 할 때,
\[ \lim_{n \to \infty} \frac{a_n}{n^2} \]의 값은? (□□□)
풀이 전략
f(t)를 이차함수 형태로 간주하고, g(t)에 따라 얻을 수 있는 정수값들의 범위를 찾은 뒤, 그 정수값들의 합을 등차수열 공식으로 계산한다. 여기서 이차함수를 통해 f(t)가 가질 수 있는 범위를 구하는 것이 핵심이다.
풀이
위의 설명이 충분하지 않다면,
설명과 정답을 더 확인해보세요
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
유사 문제와 풀이
5