질문

문제 이해
17 다음 그림의 삼각형의 넓이와 직사각형의 넓이가 서
로 같을 때, 직사각형의 가로의 길이 \(x\)의 값은?
\(\sqrt{20}\)
\(\sqrt{28}\)
\(x\)
① \(\sqrt{6}\) □□
② \(\sqrt{7}\) □□
③ \(\sqrt{\text{□□}}\)
\(\sqrt{14}\)
풀이 전략
삼각형의 넓이를 구한 뒤, 그 넓이를 직사각형 넓이( x×√14 )와 같게 놓고 x를 찾습니다. 여기서 핵심 개념은 삼각형의넓이를 정확히 구하여 등식을 세우는 것입니다.
풀이
위의 설명이 충분하지 않다면,
설명과 정답을 더 확인해보세요
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
유사 문제와 풀이
5