Câu hỏi

Hiểu Câu hỏi
Trong không gian Oxyz, cho mặt cầu (S): \((x-4)^2 + (y+3)^2 + (z+6)^2 = 50\) và đường thẳng \(d: \frac{x}{2} = \frac{y+2}{4} = \frac{z-3}{-1}\). Có bao nhiêu điểm M thuộc trục hoành, với hoành độ là số nguyên, mà từ M kẻ được đến (S) hai tiếp tuyến cùng vuông góc với d?
Phương pháp Giải bài
Để giải, ta dùng vecto làm chìa khóa: (i) Điều kiện tồn tại hai tiếp tuyến từ \(M\) tới (S) yêu cầu \(MC\ge R.\) (ii) Hai tiếp tuyến vuông góc với \(d\) nghĩa là vecto \(MT\) (với \(T\) là tiếp điểm) phải trực giao với vecto chỉ phương của \(d\).
Giải pháp
Nếu lời giải thích ở trên không đủ,
Tôi muốn kiểm tra câu trả lời!
Integer a semper turpis. Morbi ut leo in metus hendrerit aliquam et nec tortor. Morbi mollis aliquet tempor. Donec condimentum lacinia libero, vel feugiat dui lacinia nec. Morbi vel mauris in ex pretium gravida quis vel diam. Quisque porta nulla at elementum elementum. Vivamus rhoncus lectus id diam consectetur posuere.
Quisque vehicula est ut condimentum viverra. Quisque ut nibh aliquet, egestas urna sit amet, malesuada leo. Ut auctor iaculis quam ac ultricies. Curabitur a mi sem.
Quisque aliquet viverra orci et mollis. Pellentesque neque mauris, bibendum sed auctor id, vulputate eu orci. Ut egestas laoreet sem, sit amet consequat eros malesuada quis. Etiam tempus dictum lacus, vel ullamcorper nisi laoreet at. Donec eu mauris non arcu volutpat interdum. Nulla sagittis erat ut auctor sollicitudin. Pellentesque vulputate feugiat eleifend. Quisque ullamcorper venenatis leo vel gravida. Nam eu semper leo.
Q&A tương tự
5