# Hasil perhitungan rumus

Rumus
Jawaban
$$x ^ { 2 } + 2 x + 3 = 0$$
$\begin{array} {l} x = - 1 + \sqrt{ 2 } i \\ x = - 1 - \sqrt{ 2 } i \end{array}$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } = \color{#FF6800}{ 0 }$
 Ubahlah persamaan kuadrat pada sisi kiri menjadi bentuk kuadrat sempurna 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ 0 }$
$\left ( x + 1 \right ) ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } = 0$
 Pindahkan konstanta ke sisi kanan dan ubahlah tandanya 
$\left ( x + 1 \right ) ^ { 2 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } }$
$\left ( x + 1 \right ) ^ { 2 } = - 3 + \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } }$
 Hitung kuadratnya 
$\left ( x + 1 \right ) ^ { 2 } = - 3 + \color{#FF6800}{ 1 }$
$\left ( x + 1 \right ) ^ { 2 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Tambahkan $- 3$ dan $1$
$\left ( x + 1 \right ) ^ { 2 } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Pecahkanlah persamaan kuadrat menggunakan akar kuadrat 
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 2 } }$
 Temukanlah nilai $x$
$\color{#FF6800}{ x } = \pm \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } = \pm \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Pisahkanlah jawabannya 
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \\ \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \end{array}$
Coba lebih banyak fitur lain dengan app Qanda!
Cari dengan memfoto soalnya
Bertanya 1:1 ke guru TOP
Rekomendasi soal & konsep pembelajaran oleh AI