Fórmula
Calcula la integral
Solución
$$\displaystyle\int { x \sin\left( x \right) } d { x }$$
$1 \left ( - x \cos\left( x \right) + \sin\left( x \right) \right )$
Calcula la integral
$\displaystyle\int { \color{#FF6800}{ x } \color{#FF6800}{ \sin\left( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } }$
 Calcula la integral usando la formula de $\int x \sin^{n}(x) dx =\dfrac{1}{n}(-x\cos(x)\sin^{n-1}(x)+\int{\cos(x)\sin^{n-1}(x)}d{x}+(n-1)\int{x\sin^{n-2}(x)}d{x})$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ \cos\left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ \sin ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \left ( \color{#FF6800}{ x } \right) } \color{#FF6800}{ + } \displaystyle\int { \color{#FF6800}{ \cos\left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ \sin ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \left ( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \displaystyle\int { \color{#FF6800}{ x } \color{#FF6800}{ \sin ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) \sin ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \left ( x \right) + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Suma $1$ y $- 1$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) \sin ^ { \color{#FF6800}{ 0 } } \left ( x \right) + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) \color{#FF6800}{ \sin ^ { \color{#FF6800}{ 0 } } \left ( \color{#FF6800}{ x } \right) } + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Calcula la potencia 
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) \times \color{#FF6800}{ 1 } + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ \cos\left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Multiplicar cualquier número por 1 no cambia el valor 
$\dfrac { 1 } { 1 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ \cos\left( \color{#FF6800}{ x } \right) } + \displaystyle\int { \cos\left( x \right) \sin ^ { 1 - 1 } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \displaystyle\int { \cos\left( x \right) \sin ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Suma $1$ y $- 1$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \displaystyle\int { \cos\left( x \right) \sin ^ { \color{#FF6800}{ 0 } } \left ( x \right) } d { x } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \displaystyle\int { \color{#FF6800}{ \cos\left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ \sin ^ { \color{#FF6800}{ 0 } } \left ( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Sustituye con $u = \sin\left( x \right)$ y calcula la integral 
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \left [ \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \color{#FF6800}{ \sin\left( \color{#FF6800}{ x } \right) } } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \left [ \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ u } } \right ] _ { u = \sin\left( x \right) } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 La integral indefinida de $1$ es $x$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \left [ \color{#FF6800}{ u } \right ] _ { u = \sin\left( x \right) } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \left [ \color{#FF6800}{ u } \right ] _ { \color{#FF6800}{ u } = \color{#FF6800}{ \sin\left( \color{#FF6800}{ x } \right) } } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Devuelve el valor sustituido 
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \color{#FF6800}{ \sin\left( \color{#FF6800}{ x } \right) } + \left ( 1 - 1 \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Suma $1$ y $- 1$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) + \color{#FF6800}{ 0 } \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) + \color{#FF6800}{ 0 } \displaystyle\int { x \sin ^ { 1 - 2 } \left ( x \right) } d { x } \right )$
 Si multiplicas un número por 0, se convierte en 0 
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) + \color{#FF6800}{ 0 } \right )$
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) \color{#FF6800}{ + } \color{#FF6800}{ 0 } \right )$
 El valor no cambia cuando sumas o restas 0 
$\dfrac { 1 } { 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) \right )$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } } \left ( - x \cos\left( x \right) + \sin\left( x \right) \right )$
 Calcula el valor 
$\color{#FF6800}{ 1 } \left ( - x \cos\left( x \right) + \sin\left( x \right) \right )$
¡Prueba muchas más funciones en la app de Qanda!
Búsqueda por imagen.
Preguntas directas a los mejores profesores.
Problemas y clases virtuales recomendados por IA.