
$\left(a_{n}\right)=\left(-2\dfrac {1} {2}_{,\dfrac {4} {3},\dfrac {7} {4},2}$ $\dfrac {13} {6},...$
C.
$\left(a_{n}\right)=\left(0\dfrac {1} {4}_{,\dfrac {2} {3},\dfrac {9} {8},\dfrac {8} {5}}$ $\dfrac {25} {12}'...\right)$
d.
{a,} $=\left(\dfrac {1} {2},\dfrac {1} {3},\dfrac {1} {5},\dfrac {1} {9},\dfrac {1} {17}1$ $\dfrac {1} {33},...\right)$
e.
$\left(a_{n}\right)=\left(0\dfrac {1} {3}1^{\dfrac {2} {6}}$ 13 1' 14 8' $\dfrac {5} {27}1..\right)$
f.
$\dfrac {9} {8},\dfrac {12} {11},$ 1145 '
$\left(a_{n}\right)=\left(0_{,\dfrac {3} {2},\dfrac {6} {5}\dfrac {9} {8}}$
g.
{a,} $=\left(1,-\dfrac {1} {2},\dfrac {1} {3},-\dfrac {1} {4},\dfrac {1} {5}$ $-\dfrac {1} {6},..\right)$
h.
{a,} $=\left(\dfrac {1} {2},-\dfrac {1} {6},$ $\dfrac {1} {12},-\dfrac {1} {20},\dfrac {1} {30},..\right)$
i.
$\left(a_{n}\right)=\left(\dfrac {1} {5^{3}}_{,\dfrac {3} {5^{5}}}$ $\dfrac {5} {5^{7}},\dfrac {7} {5^{9}},$ 59'. 1 '
j.
$\left(a_{n}\right)=$
$=\left(\dfrac {1} {2},-\dfrac {1} {4},$ 61 ! $-\dfrac {1} {8},$ 11 0
k.
Contenido de la pregunta
encontrar el término general de cada una de las siguientes sucesiones