$1=x^{2}+8x+15=\left(x+3\right)\left(x+5\right)$
$2$ $y^{2}+y^{-30}=\left(y-5\right)\left(y+6\right)$
$-$ $x^{2}+11x-26=\left(x-2\right)\left(x+13\right)$
$x^{2}-15z+56=\left(2-7\right)\left(2-8\right)$
$5\leq -w^{3}+22w^{2}$ $23w=w\left(w^{2}+22w+23\right)$
$w^{3}+22w^{2}+23w=w$
$6\div 5x^{2}+4x-12=\left(x+2\right)\left(5x-6\right)$
$7\div 12y^{2}+y-6=\left(3y-2\right)\left(4y^{+3}\right)$
$8\div $ $6x^{2}+2ax+12=2\left(x+3\right)\left(3x+2$ 2)
$9\div 40x^{2}+4x-12=4\left(2x-1\right)$ $\left(5x+3\right)$
$10=9y^{2}+37$ $y^{+y}=\left(y+4\right)\left(9y^{+1}$
Contenido de la pregunta
podria ayudarme a sacar el prcedimiento? por favor