qanda-logo
search-icon
Símbolos
Problema
solution-image
Para que cemprendas mejer ia division de potencias de misma base, vamos a estar recerdande y ulizande una conecimientes previes 3, $4/$ aplicados en ta los potenciación, más los saberes 6onstruidos en la multiplicacion de potencias de una misma bsse y en la petencia de potencia, para lo cual vamos a ver el ejemple de este tipe de división que se encuentra a la derecha de esta pagina $1311$ operación se $10a||/$ $+14$ $|11$ exponentes $1/$ 3 de la division para que el $114111c111$ del resultado fuera $4$ Por lo tanto podemos concluir que en toda división de potencias de una misma base sucede lo siguiente $y^{9}$ $y^{4^{-y^{94}-y}}$ Con base $1$ $|$ $11$ anterior y después de observar los ejemplos completa la siguiente tabla: Hetencia con laresta Oivisian de potensias de Indicade del exonente det Potencis numeredor menes el une misma bas penente del denomineder $2=2$ $1n^{0}$ $104$ $-$
Secundaria
Cálculo
Búsquedas: 122
Solución
answer-user-profile-image
Profesor de Qanda - leo1998
answer-reply-image
answer-user-profile-image
Estudiante
Buenas tarde resuelve de español
answer-user-profile-image
Profesor de Qanda - leo1998
perdón? no entiendo la pregunta
answer-user-profile-image
Estudiante
Que si me podría resolver algo de español no se como pero es fasil
answer-reply-image
answer-user-profile-image
Profesor de Qanda - leo1998
si lo entiendo
dame un toque y lo hago
answer-user-profile-image
Estudiante
Que es un toque
answer-user-profile-image
Profesor de Qanda - leo1998
espérame un momento
ahora lo hago
answer-user-profile-image
Estudiante
Okey gracias
Y que un toque
answer-user-profile-image
Profesor de Qanda - leo1998
un toque es un momento
answer-user-profile-image
Estudiante
Falta mucho
answer-user-profile-image
Profesor de Qanda - leo1998
answer-reply-image
eso es lo que me recuerdo
no manejo muy bien el español
Problemas similares
search-thumbnail-En esta parte de la actividad vas a reafirmar tus conocimientos sobre las leyes de los exponentes. Para
dÇel oElesgitao ddo e dBe aMchiilclehoreas cán $\square $ coba em Bnteligencia que co nstruye En esta parte de la actividad vas a reafirmar tus conocimientos sobre las leyes de los exponentes. Para ello marca la opción correcta de cada enunciado y escribe la ley de los exponentes que sustenta tu 2 respuesta. Test de leyes de los exponentes Enunciado Ley de los exponentes que sustenta tu respuesta En la multiplicación de dos potencias de la misma base los exponentes se suman. a) Verdadero b) Falso En la división de potencias de la misma base los exponentes se restan a) Verdadero b) Falso $aaaala$ El resultado de elevar una potencia a otra $pot0nc$ $es$ $msm$ base elevada suma de sus exponentes. a) Verdadero $b\right)Fa50$ $esamsmoe0onan0$ El resultado de elevar una potencia a cero a) Verdadero $b\right)Fals0$ El resultado de elevar un número a $an0xp0nen0nog30\times 0osun3$ fracción. a) Verdadero b) Fdale slo a misma base el En estas expresión 4 .47, cuando se multiplican dos potencias resultado es: a) La misma base elevada al producto o multiplicación de sus exponentes 421 b) La misma base elevada a la resta de los exponente 44 c) La misma base elevada a la suma de sus exponentes 410 En la expresión el resultado de dividir dos potencias de la misma $bas0cs$ $gaa1a$ a) $a\right)1a$ misma base elevada a la resta o diferencia de sus exponentes x b) La misma base elevada al producto o multiplicación de sus exponentes x* c) La misma base elevada a la suma de sus exponentes x En la expresión (y), el resultado de elevar una potencia a otra $Poamci3$ es $ioa1$ $a11$ misma base elevada a la resta de sus exponentes y! a) $b\right)1$ misma base elevada al producto o multiplicación de sus $x00$ $onos$ y2 c) La misma base elevada a la suma de sus exponentes y En la expresión x°, el resultado de elevar un número a la potencia "0" siempre es: el resultado de elbev) aCr uenra o potencia a un $\dfrac {c\right)vna} {00ocne}$ negativo es: fracción En la $\dfrac {a\right)vn0} {cxpos6ny-2}$ $a\right)-y^{2}$ $b\right)\dfrac {1} {x^{2}}$ $c\right)\dfrac {1} {x}$ MTI José Flavio Sosa Gaspar
Bachillerato
Aritmética y álgebra
Búsquedas: 208