# Calculator search results

Formula
$$x ^ { 2 } + 2 x = 0$$
$\begin{array} {l} x = 0 \\ x = - 2 \end{array}$
Find solution by method of factorization
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 0$
$ax^{2} + bx = x\left(ax+b\right)$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = 0$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ 0 }$
 If the product of the factor is 0, at least one factor should be 0 
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } = \color{#FF6800}{ 0 } \end{array}$
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } = \color{#FF6800}{ 0 } \end{array}$
 Solve the equation to find $x$
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \end{array}$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture