# Calculator search results

Formula
Relationship between roots and coefficients
$$x ^ { 2 } - 5 x - 6 = 2$$
$\alpha + \beta = 5 , \alpha \beta = - 8$
Find the sum and product of the two roots of the quadratic equation
$x ^ { 2 } - 5 x - 6 = \color{#FF6800}{ 2 }$
 Move the expression to the left side and change the symbol 
$x ^ { 2 } - 5 x - 6 \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 0$
$x ^ { 2 } - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 0$
 Find the sum of the negative numbers 
$x ^ { 2 } - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 8 } = 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 } = \color{#FF6800}{ 0 }$
 In the quadratic equation $ax^{2}+bx+c=0$ , if the two roots are $\alpha, \beta$ , then it is $\alpha + \beta =-\dfrac{b}{a}$ , $\alpha\times\beta=\dfrac{c}{a}$
$\color{#FF6800}{ \alpha } \color{#FF6800}{ + } \color{#FF6800}{ \beta } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { - 5 } { 1 } } , \color{#FF6800}{ \alpha } \color{#FF6800}{ \beta } = \color{#FF6800}{ \dfrac { - 8 } { 1 } }$
$\alpha + \beta = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { - 5 } { 1 } } , \alpha \beta = \dfrac { - 8 } { 1 }$
 Solve the sign of a fraction with a negative sign 
$\alpha + \beta = \color{#FF6800}{ \dfrac { 5 } { 1 } } , \alpha \beta = \dfrac { - 8 } { 1 }$
$\alpha + \beta = \dfrac { 5 } { \color{#FF6800}{ 1 } } , \alpha \beta = \dfrac { - 8 } { 1 }$
 If the denominator is 1, the denominator can be removed 
$\alpha + \beta = \color{#FF6800}{ 5 } , \alpha \beta = \dfrac { - 8 } { 1 }$
$\alpha + \beta = 5 , \alpha \beta = \dfrac { - 8 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\alpha + \beta = 5 , \alpha \beta = \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture