# Calculator search results

Formula
$$x ^ { 2 } - 49 = 0$$
$\begin{array} {l} x = 7 \\ x = - 7 \end{array}$
$x = \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times \left ( - 49 \right ) } } { 2 \times 1 }$
 0 has no sign 
$x = \dfrac { \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times \left ( - 49 \right ) } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times \left ( - 49 \right ) } } { 2 \times 1 }$
 The power of 0 is 0 
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } - 4 \times 1 \times \left ( - 49 \right ) } } { 2 \times 1 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm \sqrt{ 0 - 4 \times 1 \times \left ( - 49 \right ) } } { 2 \times 1 } }$
 Organize the expression 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm \sqrt{ 196 } } { 2 \times 1 } }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 196 } } } { 2 \times 1 }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$x = \dfrac { 0 \pm \color{#FF6800}{ 14 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm 14 } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
 Multiplying any number by 1 does not change the value 
$x = \dfrac { 0 \pm 14 } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm 14 } { 2 } }$
 Separate the answer 
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 + 14 } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 - 14 } { 2 } } \end{array}$
$\begin{array} {l} x = \dfrac { \color{#FF6800}{ 0 } + 14 } { 2 } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
 0 does not change when you add or subtract 
$\begin{array} {l} x = \dfrac { 14 } { 2 } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 14 } { 2 } } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
 Do the reduction of the fraction format 
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 7 } { 1 } } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 7 } { 1 } } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
 Reduce the fraction to the lowest term 
$\begin{array} {l} x = \color{#FF6800}{ 7 } \\ x = \dfrac { 0 - 14 } { 2 } \end{array}$
$\begin{array} {l} x = 7 \\ x = \dfrac { \color{#FF6800}{ 0 } - 14 } { 2 } \end{array}$
 0 does not change when you add or subtract 
$\begin{array} {l} x = 7 \\ x = \dfrac { - 14 } { 2 } \end{array}$
$\begin{array} {l} x = 7 \\ x = \color{#FF6800}{ \dfrac { - 14 } { 2 } } \end{array}$
 Do the reduction of the fraction format 
$\begin{array} {l} x = 7 \\ x = \color{#FF6800}{ \dfrac { - 7 } { 1 } } \end{array}$
$\begin{array} {l} x = 7 \\ x = \dfrac { - 7 } { \color{#FF6800}{ 1 } } \end{array}$
 If the denominator is 1, the denominator can be removed 
$\begin{array} {l} x = 7 \\ x = \color{#FF6800}{ - } \color{#FF6800}{ 7 } \end{array}$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture