Calculator search results

Formula
List all divisors
$$18 \times 6$$
$1 , 2 , 3 , 4 , 6 , 9 , 12 , 18 , 27 , 36 , 54 , 108$
Find all divisors
$\color{#FF6800}{ 18 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \times 2 \times 3 ^ { 2 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 3 ^ { 2 } \times 3$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 3 ^ { 2 } \times 3$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 ^ { 2 } \times 3$
 Add $1$ and $1$
$2 ^ { \color{#FF6800}{ 2 } } \times 3 ^ { 2 } \times 3$
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 2 } \times 3 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$2 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $2$ and $1$
$2 ^ { 2 } \times 3 ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 18 } , \color{#FF6800}{ 27 } , \color{#FF6800}{ 36 } , \color{#FF6800}{ 54 } , \color{#FF6800}{ 108 }$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture