# Calculator search results

Formula
Relationship between roots and coefficients
$$4 x ^ { 2 } - 9 = 0$$
$\alpha + \beta = 0 , \alpha \beta = - \dfrac { 9 } { 4 }$
Find the sum and product of the two roots of the quadratic equation
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } = \color{#FF6800}{ 0 }$
 In the quadratic equation $ax^{2}+bx+c=0$ , if the two roots are $\alpha, \beta$ , then it is $\alpha + \beta =-\dfrac{b}{a}$ , $\alpha\times\beta=\dfrac{c}{a}$
$\color{#FF6800}{ \alpha } \color{#FF6800}{ + } \color{#FF6800}{ \beta } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 0 } { 4 } } , \color{#FF6800}{ \alpha } \color{#FF6800}{ \beta } = \color{#FF6800}{ \dfrac { - 9 } { 4 } }$
$\alpha + \beta = - \color{#FF6800}{ \dfrac { 0 } { 4 } } , \alpha \beta = \dfrac { - 9 } { 4 }$
 If the numerator is 0, it is equal to 0 
$\alpha + \beta = - \color{#FF6800}{ 0 } , \alpha \beta = \dfrac { - 9 } { 4 }$
$\alpha + \beta = \color{#FF6800}{ - } \color{#FF6800}{ 0 } , \alpha \beta = \dfrac { - 9 } { 4 }$
 0 has no sign 
$\alpha + \beta = \color{#FF6800}{ 0 } , \alpha \beta = \dfrac { - 9 } { 4 }$
$\alpha + \beta = 0 , \alpha \beta = \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 9 } } { 4 }$
 Move the minus sign to the front of the fraction 
$\alpha + \beta = 0 , \alpha \beta = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 4 } }$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture