# Calculator search results

Formula
$$4 x ^ { 2 } - 9 = 0$$
$\begin{array} {l} x = \dfrac { 3 } { 2 } \\ x = - \dfrac { 3 } { 2 } \end{array}$
Solve quadratic equations using the square root
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } = \color{#FF6800}{ 0 }$
 Divide both sides by the coefficient of the leading highest term 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 4 } } = \color{#FF6800}{ 0 }$
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 4 } } = 0$
 Move the constant to the right side and change the sign 
$x ^ { 2 } = \color{#FF6800}{ \dfrac { 9 } { 4 } }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ \dfrac { 9 } { 4 } }$
 Solve quadratic equations using the square root 
$\color{#FF6800}{ x } = \pm \sqrt{ \color{#FF6800}{ \dfrac { 9 } { 4 } } }$
$\color{#FF6800}{ x } = \pm \sqrt{ \color{#FF6800}{ \dfrac { 9 } { 4 } } }$
 Solve a solution to $x$
$\color{#FF6800}{ x } = \pm \color{#FF6800}{ \dfrac { 3 } { 2 } }$
$\color{#FF6800}{ x } = \pm \color{#FF6800}{ \dfrac { 3 } { 2 } }$
 Separate the answer 
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 3 } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 2 } } \end{array}$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture