# Calculator search results

Formula
Calculate the value
$$\dfrac { 1 } { \sqrt{ 3 } + \sqrt{ 2 } }$$
$\sqrt{ 3 } - \sqrt{ 2 }$
Calculate the value
$\dfrac { 1 } { \sqrt{ 3 } + \sqrt{ 2 } }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } } { \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } } }$
$\dfrac { 1 } { \sqrt{ 3 } + \sqrt{ 2 } } \times \dfrac { \sqrt{ 3 } - \sqrt{ 2 } } { \sqrt{ 3 } - \sqrt{ 2 } }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } }$
$\dfrac { \color{#FF6800}{ 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 3 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 3 } - \sqrt{ 2 } \right ) }$
 Multiply each term in parentheses by $1$
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) } { \left ( \sqrt{ 3 } + \sqrt{ 2 } \right ) \left ( \sqrt{ 3 } - \sqrt{ 2 } \right ) }$
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
 Calculate power 
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { \color{#FF6800}{ 3 } - \left ( \sqrt{ 2 } \right ) ^ { 2 } }$
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 3 - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { 1 \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 3 - \color{#FF6800}{ 2 } }$
$\dfrac { \color{#FF6800}{ 1 } \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 3 - 2 }$
 Multiplying any number by 1 does not change the value 
$\dfrac { \sqrt{ 3 } + 1 \times \left ( - \sqrt{ 2 } \right ) } { 3 - 2 }$
$\dfrac { \sqrt{ 3 } + \color{#FF6800}{ 1 } \times \left ( - \sqrt{ 2 } \right ) } { 3 - 2 }$
 Multiplying any number by 1 does not change the value 
$\dfrac { \sqrt{ 3 } - \sqrt{ 2 } } { 3 - 2 }$
$\dfrac { \sqrt{ 3 } - \sqrt{ 2 } } { \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } }$
 Subtract $2$ from $3$
$\dfrac { \sqrt{ 3 } - \sqrt{ 2 } } { \color{#FF6800}{ 1 } }$
$\dfrac { \sqrt{ 3 } - \sqrt{ 2 } } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } }$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture