qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the quadratic equation
Answer
circle-check-icon
$$x ^ { 2 } + 1 = 0$$
$ $ Do not have the solution $ $
Calculate using the quadratic formula
$x = \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times 1 } } { 2 \times 1 }$
$ $ 0 has no sign $ $
$x = \dfrac { \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times 1 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times 1 } } { 2 \times 1 }$
$ $ The power of 0 is 0 $ $
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } - 4 \times 1 \times 1 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } - 4 \times 1 \times 1 } } { 2 \times 1 }$
$ $ 0 does not change when you add or subtract $ $
$x = \dfrac { 0 \pm \sqrt{ - 4 \times 1 \times 1 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ - 4 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } } { 2 \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { 0 \pm \sqrt{ - 4 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ - 4 } } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { 0 \pm \sqrt{ - 4 } } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm \sqrt{ - 4 } } { 2 } }$
$ $ The square root of a negative number does not exist within the set of real numbers $ $
$ $ Do not have the solution $ $
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo