qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the quadratic equation
Answer
circle-check-icon
expand-arrow-icon
$$x ^ { 2 } + 3 x - 2 = 0$$
$\begin{array} {l} x = \dfrac { - 3 + \sqrt{ 17 } } { 2 } \\ x = \dfrac { - 3 - \sqrt{ 17 } } { 2 } \end{array}$
Calculate using the quadratic formula
$x = \dfrac { - 3 \pm \sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times \left ( - 2 \right ) } } { 2 \times 1 }$
$ $ Calculate power $ $
$x = \dfrac { - 3 \pm \sqrt{ \color{#FF6800}{ 9 } - 4 \times 1 \times \left ( - 2 \right ) } } { 2 \times 1 }$
$x = \dfrac { - 3 \pm \sqrt{ 9 - 4 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \times \left ( - 2 \right ) } } { 2 \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { - 3 \pm \sqrt{ 9 - 4 \times \left ( - 2 \right ) } } { 2 \times 1 }$
$x = \dfrac { - 3 \pm \sqrt{ 9 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) } } { 2 \times 1 }$
$ $ Multiply $ - 4 $ and $ - 2$
$x = \dfrac { - 3 \pm \sqrt{ 9 + \color{#FF6800}{ 8 } } } { 2 \times 1 }$
$x = \dfrac { - 3 \pm \sqrt{ \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } } } { 2 \times 1 }$
$ $ Add $ 9 $ and $ 8$
$x = \dfrac { - 3 \pm \sqrt{ \color{#FF6800}{ 17 } } } { 2 \times 1 }$
$x = \dfrac { - 3 \pm \sqrt{ 17 } } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { - 3 \pm \sqrt{ 17 } } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 3 \pm \sqrt{ 17 } } { 2 } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 3 + \sqrt{ 17 } } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 3 - \sqrt{ 17 } } { 2 } } \end{array}$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo