Calculator search results

Formula
List all divisors
$$5 \times 5 \times 5$$
$1 , 5 , 25 , 125$
Find all divisors
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
 Do prime factorization 
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 5 } \times 5 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
$5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Find the sum 
$5 ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
 List divisors of factors 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 125 }$
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture