
Activity 1: Pick Me!
Determine which of the following ordered pairs would satisfy the given system of linear
equations in two variables. Write your answers on a separate sheet of paper.
1. $ \begin{cases} x+2y=5 \\ 3x+y=5 \end{cases} $ (1, 2) (0,2) $\left(-1,3\right)$ (3,1)
2. $ \begin{cases} y=x+2 \\ 2x-3y=-7 \end{cases} $ (0,2) (1,3) (2,5) $\left(-2,0\right)$
3. $ \begin{cases} 3x-2y=8 \\ x+y=6 \end{cases} $ $\left(0,-4\right)$ (1,3) $\left(2,-1\right)$ (4,2)
4. $ \begin{cases} 4x-y=-1 \\ x+7y=7 \end{cases} $ $\left(1,-3\right)$ (0,1) $\left(-1,6\right)$ $\left(2,-7\right)$
5. $ \begin{cases} 2x-3y=14 \\ 5x+2y=-3 \end{cases} $ $\left(-3,-5\right)$ $\left(-2,1\right)$ (4,3) $\left(1,-4\right)$
$Quesions$
1. How did you determine if an ordered pair is a solution to the given system of linear RETY
equations in two variables?
2. If you are to transform each equation in the system into the $s|oDe-interceD$ form, what
conclusion can you draw about their slopes? $y-intercepts7$
3. What kind of system of linear equations are given above?