Problem

A. Find the specified value of each of the following.
Used the formula: $a_{x}$ = $\dfrac {5n\left(1-r\right)} {\left(1-r^{n}3}$
1. $S_{5}=$ $\dfrac {93} {80},r=\dfrac {1} {2}:a_{x}=7$
2. $S_{8}=2550_{,r}=2:a_{1}=7$
$3$ $S_{7}=7651_{,r}=3:$ $a_{1}=2$
$4.$ $S_{10}=51_{,150,r}=2:$ $a_{1}=7$
$5$ $S_{6}=126_{,r}=-\dfrac {1} {2}:a_{1}=7$
B. Find the sum of finite geometric sequence from the given values.
$1.a_{1}=-2_{,r}=5_{,S_{3}}=7$
$2.a_{1}=3_{,r}=-3_{,S_{4}}=7$
$3.a_{1}=-3_{,r}=4_{,S_{6}}=7$
$4.a_{1}=-3_{,r}=-2_{,S_{6}}=2$
$-4+16-64+256..,S_{8}=7$

10th-13th grade

Geometry

Search count: 108

Solution

Qanda teacher - amrit69

Student

?

Still don't get it?

Ask this question to Qanda teacherSimilar problem