qanda-logo
search-icon
Symbol
apple-logo
google-play-logo
Problem
solution-image
b 1 | If $ \begin{cases} a \\ b \\ c \end{cases} $ $1|=2010$ aPnd v $a$ 1 $c-b$ $C-b$ $c^{2}|$ $ \begin{cases} c-a \\ a-b \\ b-c \end{cases} $ $a-C$ $111$ $5$ $8$ $0$ $-$ $\bar{8} $ $\infty $ b $a-c$ $a^{2}|=p,$ then the $b-a$ $b-a$ $b^{2}|$ number of positive divisors of p is (a) $36$ (b) $49$ $\left(c\right)$ 64 (d) $81$
10th-13th grade
Algebra
Solution
answer-user-profile-image
Qanda teacher - Mamatha
answer-reply-image