qanda-logo
search-icon
Symbol
Problem
solution-image
$Ex.1$ If $t^{-1}\left(f\left(s\right)\right)=F\left(t\right)$ then $t^{-1}\left(\dfrac {a\pi } {4s^{0}}f\left(s\right)\right)=$ $\left(A\right)$ $\left(-1\right)^{n+1}t^{n+1}F\left(t\right)$ $\left(B\right)$ $\left(-1\right)^{n}t^{n}F\left(t\right)$ $\left(C\right)$ $\left(-1\right)^{n}s^{n}f\left(s\right)$ $1$ (D) $\right)$ None of These
Other
Search count: 120
Question content
inverse laplas transform
Solution
answer-user-profile-image
Qanda teacher - ManishYd
answer-reply-image
if u don't understand plzz tell me I'll explain again
answer-user-profile-image
Student
can you explain again please.
answer-user-profile-image
Qanda teacher - ManishYd
wait
Similar problem