Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Problem
Use Lagrange Multipliers to find the maximum value of the function subject to the given constraint. $f\left(x,y,z\right)=e^{x+y+z}:x^{2}+2y^{2}+z^{2}=10$ $1$ $e^{10}$ $e^{-10}$ $e^{5}$ $e-5$
Calculus
Search count: 111
Solution
Qanda teacher - madhav41
Still don't get it?
Ask this question to Qanda teacher
Similar problem
Use Lagrange Multipliers to find the maximum value of the function subject to the given constraint. $f\left(x,y,z\right)=e^{x+y+z}:x^{2}+2y^{2}+z^{2}=10$ 1 $10$ $-1b$ es $1$
Calculus
Search count: 111
Check solution
Question $4$ $4pts$ Use Lagrange multipliers to find the maximum and minimum values of the function below subject to the given constraint. $f\left(x,y\right)=x^{2}y:$ $x^{2}+y^{2}=1$ $O$ O minimum $n=0,$ maximum $num=\dfrac {1} {2\sqrt{2} }$ $O$ O minimum $n=0,$ maximum $num=\dfrac {2} {3\sqrt{3} }$ $\times imum=\dfrac {2} {3\sqrt{3} }$ $○$ minimum $m=-\dfrac {2} {3\sqrt{3} }$ maximum $\times imum=\dfrac {1} {2\sqrt{2} }$ $C$ O minimum $m=-\dfrac {1} {2\sqrt{2} }$ maximum
Calculus
Check solution
Use Lagrange Multipliers to find global maximum and minimum values $of:$ $f\left(x,$ $y\right)=x^{2}+2y^{2}-4y$ $\left(1\right)$ subject to the $constraint:$ $x^{2}+y^{2}=9$ $\left(2\right)$
Calculus
Check solution
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com