Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Problem
$c\right)$ $\bar{x-2} $ Activity $2:$ Divide the following polynomials using synthetic division $\square $ $\left(4x^{2}+x-3\right)\div \left(x-3\right)$ b) $\left(3x^{2}+4x-x^{4}-2x^{3}-4\right)\div \left(x+2\right)$ c) $\left(2x^{5}-2x^{3}+4x^{2}-3\right)\div \left(x+1\right)$ d) $\left(-x^{4}+2x^{5}-2x-3x^{2}+1\right)+\left(x-2\right)$ $c\right)$ $\left(2x^{3}+5x^{2}-4x-5\right)\div \left(2x+1\right)$
10th-13th grade
Other
Search count: 131
Solution
Qanda teacher - Ankit264
Student
sir how about the answer of b,c,d,e?
Still don't get it?
Ask this question to Qanda teacher
Similar problem
$→1$ Now, your turn! Activity $1:$ Divide the following polynomials using long division. a) $\left(2x^{3}+9x^{2}+3x-4\right)\div \left(x+4\right)$ b) $\left(8x^{3}+27\right)\div \left(2x+3\right)$ c) $\dfrac {11x-20x^{2}+12x^{3}-14} {x-2}$ Activity $2:$ Divide the following polynomials using synthetic division a) $\left(4x^{2}+x-3\right)\div \left(x-3\right)$ b) $\left(3x^{2}+4x-x^{4}-2x^{3}-4\right)\div \left(x+2\right)$ c) $\left(2x^{5}-2x^{3}+4x^{2}-3\right)\div \left(x+1\right)$ d) $\left(-x^{4}+2x^{5}-2x-3x^{2}+1\right)\div \left(x-2\right)$ $e\right)$ $\left(2x^{3}+5x^{2}-4x-5\right)\div \left(2x+1\right)$
10th-13th grade
Other
Search count: 164
Check solution
$\dfrac {11x-20x^{2}+12x^{3}-14} {x-2}$ Activity $2:$ Divide the following polynomials using synthetic division a) $\left(4x^{2}+x-3\right)+\left(x-3\right)$ b) $\left(3x^{2}+4x-x^{4}-2x^{3}-4\right)+\left(x+2\right)$ c) $\left(2x^{5}-2x^{3}+4x^{2}-3\right)\div \left(x+1\right)$ d) $\left(-x^{4}+2x^{5}-2x-3x^{2}+1\right)+\left(x-2\right)$ $c\right)$ $\left(2x^{3}+5x^{2}-4x-5\right)+\left(2x+1\right)$
10th-13th grade
Geometry
Search count: 131
Check solution
Activity $23$ Divide the following polynomials using synthetic division a) $\left(4x^{2}+x-3\right)\div \left(x-3\right)$ $b\right)$ $\left(3x^{2}+4x-x^{4}-2x^{3}-4\right)+\left(x+2\right)$ $c\right)$ $\left(2x^{5}-2x^{3}+4x^{2}-3\right)\div \left(x+1\right)$ $d\right)$ $\left(-x^{4}+2x^{5}-2x-3x^{2}+1\right)\div \left(x-2\right)$ $c\right)$ $\left(2x^{3}+5x^{2}-4x-5\right)\div \left(2x+1\right)$
10th-13th grade
Other
Check solution
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com