qanda-logo
search-icon
Symbol
Problem
solution-image
Match the polynomial in Column I with the correct factors in Column II. Write the letter of the $comeC$ answer in the box to decipher the message. $x^{3}+7x^{2}+2x-40$ $1.$ $A\left(x-5\right)\left(x+4\right)\left(x+3\right)$ 2. $x^{3}-10x^{2}+31x-30$ E. $2\left(x+2\right)\left(x-2\right)\left(x+5\right)$ 3. $x^{3}+2x^{2}-23x-60$ $F.2\left(x-1\right)\left(x+1\right)\left(x+7\right)$ 4. $x^{3}-13x^{2}+55x-75$ H. $2\left(x-2\right)\left(x+2\right)\left(x-3\right)$ $5.$ $2x^{3}+14x^{2}-2x-14$ $P.2\left(x-1\right)\left(x+1\right)\left(x-6\right)$ $6.$ $2x^{3}+10x^{2}-8x-40$ $s.\left(x+5\right)\left(x+4\right)\left(x-2\right)$ $7.$ $2x^{3}-12x^{2}-2x+12$ $T.\left(x-3\right)\left(x-2\right)\left(x-5\right)$ 8. $2x^{3}-6x^{2}-8x+24$ $Y.\left(x-5\right)\left(x-5\right)\left(x-3\right)$ 3 4 3 5 6 7
10th-13th grade
Other
Search count: 125
Solution
answer-user-profile-image
Qanda teacher - suhelsuraj
answer-reply-image
answer-user-profile-image
Student
thanks a lot
Similar problem
search-thumbnail-For your reference you can visit this 1 x\dfrac{coiam1nA}{2+5x+6} \dfrac{S.}{H}\dfrac{1}{1}x^{x\dfrac{-3)(x}{+7)(\bar{x}}^{5)}}5
The learner factors polynomials $1$ $Oaaxtx1$ $Ncsk7$ Activity 1: Build My Parts... Good day! Do you still recall how to factor $1$ $no$ $as3$ Let's find out in this acuv i $Direct1ons$ Match the polynonmial expressions in Column A with the factors in Column B to answer the question below. Write the letter of your answer in the corresponding box below. established ihe idea that the $2lcsi100$ Who is the mathenatician who first square of the length of the hypotemuse is equal to the sum of the squares of the leng ths of the two legs? $ColannnB$ For your reference you can visit this websites: 1 $x\dfrac {coiam1nA} {2+5x+6}$ $x^{4}-25$ $\dfrac {S.} {H}\dfrac {1} {1}x^{x\dfrac {-3\right)\left(x} {+7\right)\left(\bar{x} }^{5\right)}}5$ $-$ attps opentestbc.colelementarvaleabraopen $acb$ $sn2$ $io0-$ $n$ 423. . . ebunomials $2-1x+24$ $x^{2}+10x-8$ $x^{4}-3x^{3}-36x$ $P\left(x-4\right)\left(x-6\right)$ $T\left(2x-3\right)^{2}$ S. $Didthe4$ activity help you recall $tactot1n$ 6 - polynomial expressions? Are you still 7, $\dfrac {5b} {8x+15}$ $-27$ familiar with the factoring techniques? 8. $05\left(a-b\right)$ $A$ $\left(a-3$ $a^{2}$ $3a+9$ $3^{2}\left(x-4\left(x+3\right)$ $R$ $x+2$ $\left(x+3\right)$ $A$ $2+5\right)$ $x^{2}-5$ $y$ $3x$ $2$ $x$ $4\right)$ This topic was discussed in Math 8. Before you proceed to the next activity try 19 0. $\dfrac {x^{2}+2x-35} {4x^{2}}$ $-12x+9$ to go revisit the different factoring - techniques to help you solve more activities easily. $iosogc$ $t$ $m10$ 3 $8$ $6$ 2 7 79
10th-13th grade
Geometry