qanda-logo
search-icon
Symbol
Problem
solution-image
1. $\dfrac {x+2} {3}=\dfrac {2x-4} {2}$ A. $-3$ $C.$ -1 and 6 $\dfrac {7} {4x}-\dfrac {3} {x^{2}}=\dfrac {1} {2x^{2}}$ $\dfrac {2x} {x+1}+\dfrac {5} {2x}=2$ D. $-5$ E. $\left(2,$ $\dfrac {11} {2}\right)$ G. 4 $\dfrac {x^{2}-1} {x-3}=\dfrac {8} {x-3}$ $\dfrac {1} {x-6}+\dfrac {x} {x-2}=\dfrac {4} {x^{2}-8x+12}$ I. 3 L. $\left(-4,1\right)$ N. -3 and 3 $O_{i}$ 2 $\dfrac {5x} {\dfrac {x\bar{x} ^{1}} {x-2}}<4$ $-7=\dfrac {2} {x-2}$ $\dfrac {x^{2}+x-12} {x-1}\leq 0$ $S.$ -1 V. $\left(-00$ $-4|v\left(1$ 3] Y. $-00$ $4\right)$ $∪\left(1,$ 3) $\dfrac {3x+1} {x-2}\geq 5$
1st-6th grade
Other
Search count: 143
Solution
answer-user-profile-image
Qanda teacher - Gagan
answer-reply-image
answer-reply-image
answer-reply-image
answer-reply-image
6- L