Using the \emph{removal of first derivative}
method, the differential equation \( \frac{d^{2}y}
$\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$
$dx\right)+Qy=RN\right)$ is transformed
as \). For,
the differential equation \frac{d^{2}y}
$\left(d^{n}\left(2\right)y\right)$
$dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the
value of $\left(11\right)$