Symbol

# Calculator search results

Formula
Solve the equation
Graph
$x = y - 5$
$x = 3 y - 25$
$x$Intercept
$\left ( - 5 , 0 \right )$
$y$Intercept
$\left ( 0 , 5 \right )$
$x$Intercept
$\left ( - 25 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 25 } { 3 } \right )$
$y-5 = 3y-25$
$y = 10$
 Solve a solution to $y$
$y - 5 = \color{#FF6800}{ 3 } \color{#FF6800}{ y } - 25$
 Move the variable to the left-hand side and change the symbol 
$y - 5 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } = - 25$
$y \color{#FF6800}{ - } \color{#FF6800}{ 5 } - 3 y = - 25$
 Move the constant to the right side and change the sign 
$y - 3 y = - 25 \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } = - 25 + 5$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = - 25 + 5$
$- 2 y = \color{#FF6800}{ - } \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
 Add $- 25$ and $5$
$- 2 y = \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
 Change the sign of both sides of the equation 
$2 y = 20$
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ 20 }$
 Divide both sides by the same number 
$\color{#FF6800}{ y } = \color{#FF6800}{ 10 }$
Solution search results
$4y-5=3x$