qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Convert to the standard form of the quadratic function
Answer
circle-check-icon
Find the maximum and minimum of the quadratic function
Answer
circle-check-icon
expand-arrow-icon
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = x ^ { 2 } - 6 x + 7$
$x$Intercept
$\left ( 3 - \sqrt{ 2 } , 0 \right )$, $\left ( \sqrt{ 2 } + 3 , 0 \right )$
$y$Intercept
$\left ( 0 , 7 \right )$
Minimum
$\left ( 3 , - 2 \right )$
Standard form
$y = \left ( x - 3 \right ) ^ { 2 } - 2$
$y = x ^{ 2 } -6x+7$
$y = \left ( x - 3 \right ) ^ { 2 } - 2$
Rewrite it as the standard form of the quadratic function
$y = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
$ $ Add and subtract constants to convert the quadratic equation on the right side to the standard form $ $
$y = x ^ { 2 } - 6 x + 7 + \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$y = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } + 7 \color{#FF6800}{ + } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } - 3 ^ { 2 }$
$ $ Organize the expression using $ A^{2} ± 2AB + B^2 = (A ± B)^{2}$
$y = \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } + 7 - 3 ^ { 2 }$
$y = \left ( x - 3 \right ) ^ { 2 } + 7 - \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate power $ $
$y = \left ( x - 3 \right ) ^ { 2 } + 7 - \color{#FF6800}{ 9 }$
$y = \left ( x - 3 \right ) ^ { 2 } + \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$ $ Subtract $ 9 $ from $ 7$
$y = \left ( x - 3 \right ) ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$- 2$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
$ $ Rewrite it as the standard form of the quadratic function $ $
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ As $ a \gt 0 $ is, the minimum value is $ - 2 $ if $ x = 3$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\dfrac {d } {d x } {\left( y \right)} = 2 x - 6$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
search-thumbnail-For problems $2-7$ solve by completing the square. 
$2$ $y=x^{2}+2x-8$ 
$3$ $y=x^{2}+6x+5$ 
$4$ $y=x^{2}-4x-16$ 
$2$ 
$5$ $y=x^{2}-8x-8$ 
$6$ $y=x^{2}-6x+25$ 
$7$ $y=x^{2}-14x+76$
10th-13th grade
Algebra
search-thumbnail-Write $y=x^{2}-6x+7$ in vertex form.
1st-6th grade
Calculus
search-thumbnail-$DIRECTIONS$ Transfor 
$1.y=x^{2}-6x+7$ 
$\left(l$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo