Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
$y = x ^{ 2 } -2x+k$
$\dfrac {d } {d k } {\left( y \right)} = 2 x \dfrac {d } {d k } {\left( x \right)} - 2 \dfrac {d } {d k } {\left( x \right)} + 1$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ k } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ k } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \dfrac {d } {d \color{#FF6800}{ k } } {\left( \color{#FF6800}{ x } \right)} \color{#FF6800}{ - } \color{#FF6800}{ 2 } \dfrac {d } {d \color{#FF6800}{ k } } {\left( \color{#FF6800}{ x } \right)} \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
Solution search results
search-thumbnail-a. Given the quadraticfunctions $y=x^{2}-2x-3$ and $y=-x^{2}+4x-1$ – transform them into 
- – 
the vertex form $my=a\left(x-h\right)^{2}+k$ 
- 
$y=x^{2}-2x-3$ $y=-x^{2}+4x-1$ –
7th-9th grade
Other
search-thumbnail-MAP $1:y=x^{2-2x-3}$ 
Transform $y=x^{2}-2x-3$ into 
the form $y=a\left(x-h\right)2+k$ 
$y=x^{2-2x-3}$ 
$y+1=\left(x^{2-2x+1}\right)$ $-3$ 
$y=\left(x-1\right)^{2-3-1}$ 
$y=\left(x-1\right)^{2-4}$
7th-9th grade
Other
search-thumbnail-$A\right)0$ B) $2$ $\sqrt{2} $ 
The value of 'k', if the straight lines $3x+6y+7=0$ and $2x+ky=5$ are perpendicular to 
$3\right)$ $1$ $3\right)-$ $\right)$ $-1$ $C\right)$ $2$ D) $\right)$ $0.5$ 
$1$ $2\right)$ ond where the polynomial $x^{2}-2x+$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo