# Calculator search results

Formula
Convert to the standard form of the quadratic function
Find the maximum and minimum of the quadratic function
Calculate the differentiation
Graph
$y = x ^ { 2 } + 2 x - 8$
$x$Intercept
$\left ( 2 , 0 \right )$, $\left ( - 4 , 0 \right )$
$y$Intercept
$\left ( 0 , - 8 \right )$
Minimum
$\left ( - 1 , - 9 \right )$
Standard form
$y = \left ( x + 1 \right ) ^ { 2 } - 9$
$y = x ^{ 2 } +2x-8$
$y = \left ( x + 1 \right ) ^ { 2 } - 9$
Rewrite it as the standard form of the quadratic function
$y = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Add and subtract constants to convert the quadratic equation on the right side to the standard form 
$y = x ^ { 2 } + 2 x - 8 + \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } }$
$y = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 8 \color{#FF6800}{ + } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 }$
 Organize the expression using $A^{2} ± 2AB + B^2 = (A ± B)^{2}$
$y = \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } - 8 - 1 ^ { 2 }$
$y = \left ( x + 1 \right ) ^ { 2 } - 8 - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } }$
 Calculate power 
$y = \left ( x + 1 \right ) ^ { 2 } - 8 - \color{#FF6800}{ 1 }$
$y = \left ( x + 1 \right ) ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Find the sum of the negative numbers 
$y = \left ( x + 1 \right ) ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$- 9$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Rewrite it as the standard form of the quadratic function 
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 As $a \gt 0$ is, the minimum value is $- 9$ if $x = - 1$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\dfrac {d } {d x } {\left( y \right)} = 2 x + 2$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 그래프 보기