# Calculator search results

Formula
Calculate the differentiation
Graph
$y = 7 x ^ { 4 } - 2 x ^ { 3 } + 8 x + 5$
$y$Intercept
$\left ( 0 , 5 \right )$
Derivative
$28 x ^ { 3 } - 6 x ^ { 2 } + 8$
Seconde derivative
$84 x ^ { 2 } - 12 x$
Local Minimum
$\left ( - \dfrac { \sqrt[ 3 ]{ \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } } } { 3 } - \dfrac { 3 } { 196 \left ( \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } \right ) ^ { \frac { 1 } { 3 } } } + \dfrac { 1 } { 14 } , - \dfrac { 8 \sqrt[ 3 ]{ \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } } } { 3 } - \dfrac { 6 } { 49 \left ( \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } \right ) ^ { \frac { 1 } { 3 } } } - 2 \left ( - \dfrac { \sqrt[ 3 ]{ \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } } } { 3 } - \dfrac { 3 } { 196 \left ( \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } \right ) ^ { \frac { 1 } { 3 } } } + \dfrac { 1 } { 14 } \right ) ^ { 3 } + 7 \left ( - \dfrac { \sqrt[ 3 ]{ \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } } } { 3 } - \dfrac { 3 } { 196 \left ( \dfrac { 27 \sqrt{ 195 } } { 98 } + \dfrac { 10557 } { 2744 } \right ) ^ { \frac { 1 } { 3 } } } + \dfrac { 1 } { 14 } \right ) ^ { 4 } + \dfrac { 39 } { 7 } \right )$
Point of inflection
$\left ( 0 , 5 \right )$, $\left ( \dfrac { 1 } { 7 } , \dfrac { 2106 } { 343 } \right )$
$y = 7x ^{ 4 } -2x ^{ 3 } +8x+5$
$\dfrac {d } {d x } {\left( y \right)} = 28 x ^ { 3 } - 6 x ^ { 2 } + 8$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ 28 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 }$
 그래프 보기 
Higher order function
Solution search results