qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = 4 x + 1$
$x$Intercept
$\left ( - \dfrac { 1 } { 4 } , 0 \right )$
$y$Intercept
$\left ( 0 , 1 \right )$
$y = 4x+1$
$x = \dfrac { 1 } { 4 } y - \dfrac { 1 } { 4 }$
$ $ Solve a solution to $ x$
$y = \color{#FF6800}{ 4 } \color{#FF6800}{ x } + 1$
$ $ Move $ x $ term to the left side and change the sign $ $
$y \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = 1$
$\color{#FF6800}{ y } - 4 x = 1$
$ $ Move the rest of the expression except $ x $ term to the right side and replace the sign $ $
$- 4 x = 1 \color{#FF6800}{ - } \color{#FF6800}{ y }$
$- 4 x = \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ y }$
$ $ Organize the expression $ $
$- 4 x = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Change the sign of both sides of the equation $ $
$4 x = y - 1$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 4 }$
$x = \left ( y - 1 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 4 }$
$ $ Convert division to multiplication $ $
$x = \left ( y - 1 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$x = \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 4 }$
$x = \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$\dfrac {d } {d x } {\left( y \right)} = 4$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 4 }$
$ $ 그래프 보기 $ $
Linear function
Solution search results
search-thumbnail-$y=4x^{°}+1$ 
$y=-2x-5$
7th-9th grade
Other
search-thumbnail-Solve for $x$ and y 
$y=2x+1$ 
$y=4x.1$ 
$D\left(-1.3\right)$ 
$\left(3.1\right)$ 
$1$ $-1$ $\left(13\right)$ 
$0\left(-1.-3\right)$ 
$=$
10th-13th grade
Other
search-thumbnail-Construct a table of solutions and graph the equation. 
$y=4x+1$ 
$y=4x+1$ 
$x$ $y$ 
$0$ $5$ 
1. 
$2$ 
$40$ 
$x$ $2$ 
$5$ 
$\dfrac {0} {v}$ 
$-104$ $8$ $7$ $2$ 9 10 
4.
10th-13th grade
Algebra
search-thumbnail-$10$ Which equation represents the y in this graph table? 
$-2$ $=1$ $0$ $2$ $3$ 4 
$\dfrac {x-} {5}^{2}$ $y$ $|$ $2$ $1$ $2$ $5$ $10$ $17$ 
$y=4x+1$ $y=X+7$ 
$O$ 
$y=X^{2}+1$ 
$y=3x+1$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo