qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = 2 x - 1$
$x$Intercept
$\left ( \dfrac { 1 } { 2 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 1 \right )$
$y = 2x-1$
$x = \dfrac { 1 } { 2 } y + \dfrac { 1 } { 2 }$
$ $ Solve a solution to $ x$
$y = \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 1$
$ $ Move $ x $ term to the left side and change the sign $ $
$y \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = - 1$
$\color{#FF6800}{ y } - 2 x = - 1$
$ $ Move the rest of the expression except $ x $ term to the right side and replace the sign $ $
$- 2 x = - 1 \color{#FF6800}{ - } \color{#FF6800}{ y }$
$- 2 x = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ y }$
$ $ Organize the expression $ $
$- 2 x = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Change the sign of both sides of the equation $ $
$2 x = y + 1$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$x = \left ( y + 1 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$ $ Convert division to multiplication $ $
$x = \left ( y + 1 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 2 }$
$x = \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$\dfrac {d } {d x } {\left( y \right)} = 2$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 2 }$
$ $ 그래프 보기 $ $
Linear function
Solution search results
search-thumbnail-$1$ $y=2x-1$ 
$y=x+5$
7th-9th grade
Geometry
search-thumbnail-Which equation gives the rule for this table? 
$3$ $7$ 
$5$ $4$ 
$6$ $5$ 
$7$ $6$ 
$8$ $7$ 
$y=-2x-1$ $y=2x-1$ $V=x-1$ $y=-x-1$ 
Submit
7th-9th grade
Other
search-thumbnail--1 $\dfrac {y=x} {y\left(x}$ $\left(x,y\right)$ $y^{y}>2x$ $\dfrac {y=3x} {y\left(x}$ (x, y) $\dfrac {y=4x} {y\left(x}$ (x, y) $\dfrac {y=5x} {y\left(x}$ $\left(xy\right)$ 

1 
$y=3x+1$ 
-1 $\bar{\left(x,y\right)} $ $\dfrac {y=3x} {y}+2$ $\left(xv$ $-$ $y=3x+3$ $y$ $\left(xv$ $\dfrac {y=3x} {y}+4$ $\left(xy\right)$ $\dfrac {y=3x} {y}+5$ $\left(xy$ 

1 
-1 $y=2x-1$ $y=2x-2$ $y=2x-3$ $y=2x-4$ $y=2x-5$ 
(X, y) y (X, y) y (X, y) y (x, y) y (x, y) 

1
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo