Calculator search results

Formula
Find the maximum and minimum of the quadratic function
Answer
circle-check-icon
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = 2 \left ( x - 3 \right ) ^ { 2 }$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , 18 \right )$
Minimum
$\left ( 3 , 0 \right )$
Standard form
$y = 2 \left ( x - 3 \right ) ^ { 2 }$
$y = 2 \left( x-3 \right) ^{ 2 }$
$0$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ As $ a \gt 0 $ is, the minimum value is $ 0 $ if $ x = 3$
$\color{#FF6800}{ 0 }$
$\dfrac {d } {d x } {\left( y \right)} = 4 x - 12$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo