# Calculator search results

Formula
Find the maximum and minimum of the quadratic function
Calculate the differentiation
Graph
$y = 2 \left ( x - 3 \right ) ^ { 2 }$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , 18 \right )$
Minimum
$\left ( 3 , 0 \right )$
Standard form
$y = 2 \left ( x - 3 \right ) ^ { 2 }$
$y = 2 \left( x-3 \right) ^{ 2 }$
$0$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } }$
 As $a \gt 0$ is, the minimum value is $0$ if $x = 3$
$\color{#FF6800}{ 0 }$
$\dfrac {d } {d x } {\left( y \right)} = 4 x - 12$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
 그래프 보기