# Calculator search results

Formula
Convert to the standard form of the quadratic function
Find the maximum and minimum of the quadratic function
Calculate the differentiation
Graph
$y = - x ^ { 2 } - 4 x - 4$
$x$-intercept
$\left ( - 2 , 0 \right )$
$y$-intercept
$\left ( 0 , - 4 \right )$
Maximum
$\left ( - 2 , 0 \right )$
Standard form
$y = - \left ( x + 2 \right ) ^ { 2 }$
$y = -x ^{ 2 } -4x-4$
$y = - \left ( x + 2 \right ) ^ { 2 }$
Rewrite it as the standard form of the quadratic function
$y = \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 4$
 In order to convert the quadratic equation on the right side to the standard form, enclose it with the coefficient of the highest term 
$y = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \right ) - 4$
$y = - \left ( x ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } 4 \right ) x \right ) - 4$
 Simplify Minus 
$y = - \left ( x ^ { 2 } + 4 x \right ) - 4$
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) - 4$
 Add and subtract constants to convert the quadratic equation on the right side to the standard form 
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \right ) - 4$
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } \right ) - 4$
 Organize the expression using $A^{2} ± 2AB + B^2 = (A ± B)^{2}$
$y = - \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } \right ) - 4$
$y = - \left ( \left ( x + 2 \right ) ^ { 2 } - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \right ) - 4$
 Calculate power 
$y = - \left ( \left ( x + 2 \right ) ^ { 2 } - \color{#FF6800}{ 4 } \right ) - 4$
$y = \color{#FF6800}{ - } \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) - 4$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$y = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } - 4$
$y = - \left ( x + 2 \right ) ^ { 2 } + \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Remove the two numbers if the values are the same and the signs are different 
$y = - \left ( x + 2 \right ) ^ { 2 } + 0$
$y = - \left ( x + 2 \right ) ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$y = - \left ( x + 2 \right ) ^ { 2 }$
$0$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Rewrite it as the standard form of the quadratic function 
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
 As $a \lt 0$ is, the maximum value is $0$ if $x$ = $- 2$
$\color{#FF6800}{ 0 }$
$\dfrac {d } {d x } {\left( y \right)} = - 2 x - 4$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 그래프 보기