Calculator search results

Formula
Convert to the standard form of the quadratic function
Answer
circle-check-icon
Find the maximum and minimum of the quadratic function
Answer
circle-check-icon
expand-arrow-icon
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = - x ^ { 2 } - 4 x - 4$
$x$-intercept
$\left ( - 2 , 0 \right )$
$y$-intercept
$\left ( 0 , - 4 \right )$
Maximum
$\left ( - 2 , 0 \right )$
Standard form
$y = - \left ( x + 2 \right ) ^ { 2 }$
$y = -x ^{ 2 } -4x-4$
$y = - \left ( x + 2 \right ) ^ { 2 }$
Rewrite it as the standard form of the quadratic function
$y = \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 4$
$ $ In order to convert the quadratic equation on the right side to the standard form, enclose it with the coefficient of the highest term $ $
$y = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \right ) - 4$
$y = - \left ( x ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } 4 \right ) x \right ) - 4$
$ $ Simplify Minus $ $
$y = - \left ( x ^ { 2 } + 4 x \right ) - 4$
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) - 4$
$ $ Add and subtract constants to convert the quadratic equation on the right side to the standard form $ $
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \right ) - 4$
$y = - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } \right ) - 4$
$ $ Organize the expression using $ A^{2} ± 2AB + B^2 = (A ± B)^{2}$
$y = - \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } \right ) - 4$
$y = - \left ( \left ( x + 2 \right ) ^ { 2 } - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \right ) - 4$
$ $ Calculate power $ $
$y = - \left ( \left ( x + 2 \right ) ^ { 2 } - \color{#FF6800}{ 4 } \right ) - 4$
$y = \color{#FF6800}{ - } \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) - 4$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$y = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } - 4$
$y = - \left ( x + 2 \right ) ^ { 2 } + \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$y = - \left ( x + 2 \right ) ^ { 2 } + 0$
$y = - \left ( x + 2 \right ) ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$y = - \left ( x + 2 \right ) ^ { 2 }$
$0$
Find the maximum and minimum of the quadratic function
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Rewrite it as the standard form of the quadratic function $ $
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ As $ a \lt 0 $ is, the maximum value is $ 0 $ if $ x $ = $ - 2$
$\color{#FF6800}{ 0 }$
$\dfrac {d } {d x } {\left( y \right)} = - 2 x - 4$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
search-thumbnail-The polynomial function that has an $nte\pi c00$ $9$ $0$ $2$ one turning point and a range 
$01y\leq 0is$ 
$°y=-x^{2}44x-4$ 
$y=x^{2}-4x+4$ 
$y=-x^{3}+4x^{2}-4x$ 
$y=-x^{2}-4\times 4$
10th-13th grade
Other
search-thumbnail-Question $2$ $\left(1$ point) $\right)$ 
$10$ 

$10$ 
The best equation for the graph given is 
$y=x^{3}-x^{2}+4x+4$ 
$y=x^{3}+x^{2}-4x+4$ 
$y=x^{3}-x^{2}+4x-4$ 
$y=-x^{3}-x^{2}+4x+4$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo