Symbol

Calculator search results

Formula
Solve the equation
Calculate the differentiation
Graph
$y = - 2 x$
$x$Intercept
$\left ( 0 , 0 \right )$
$y$Intercept
$\left ( 0 , 0 \right )$
$y = -2x$
$x = - \dfrac { 1 } { 2 } y$
 Solve a solution to $x$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
 Move $x$ term to the left side and change the sign 
$y \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 0$
$\color{#FF6800}{ y } + 2 x = 0$
 Move the rest of the expression except $x$ term to the right side and replace the sign 
$2 x = 0 \color{#FF6800}{ - } \color{#FF6800}{ y }$
$2 x = \color{#FF6800}{ 0 } \color{#FF6800}{ - } \color{#FF6800}{ y }$
 Organize the expression 
$2 x = \color{#FF6800}{ - } \color{#FF6800}{ y }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$x = - y \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
 Convert division to multiplication 
$x = - y \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
 Simplify the expression 
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ y }$
$\dfrac {d } {d x } {\left( y \right)} = - 2$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 }$
Solution search results
$y=-2x^{2}$