Symbol

# Calculator search results

Formula
Solve the equation
Calculate the differentiation
Graph
$y = - \dfrac { 2 } { 3 } x + 4$
$x$Intercept
$\left ( 6 , 0 \right )$
$y$Intercept
$\left ( 0 , 4 \right )$
$y = - \dfrac{ 2 }{ 3 } x+4$
$x = - \dfrac { 3 } { 2 } y + 6$
 Solve a solution to $x$
$y = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } + 4$
 Calculate the multiplication expression 
$y = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x } { 3 } } + 4$
$\color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 3 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 }$
$3 y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 12$
 Move $x$ term to the left side and change the sign 
$3 y + 2 x = 12$
$\color{#FF6800}{ 3 } \color{#FF6800}{ y } + 2 x = 12$
 Move the rest of the expression except $x$ term to the right side and replace the sign 
$2 x = 12 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right )$
$2 x = \color{#FF6800}{ 12 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right )$
 Organize the expression 
$2 x = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$x = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
 Convert division to multiplication 
$x = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
 Organize the expression 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = - \dfrac { 3 } { 2 } y + \color{#FF6800}{ 12 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
 Calculate the product of rational numbers 
$x = - \dfrac { 3 } { 2 } y + \color{#FF6800}{ 6 }$
$\dfrac {d } {d x } {\left( y \right)} = - \dfrac { 2 } { 3 }$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 } { 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture