qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = \dfrac { 3 } { x ^ { 3 } } + x ^ { - 4 }$
$x$Intercept
$\left ( - \dfrac { 1 } { 3 } , 0 \right )$
$y = \dfrac{ 3 }{ x ^{ 3 } } +x ^{ -4 }$
$\dfrac {d } {d x } {\left( y \right)} = - \dfrac { 9 x + 4 } { x ^ { 5 } }$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ \dfrac { 3 } { x ^ { 3 } } } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 4 } } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 x + 4 } { x ^ { 5 } } }$
$\begin{cases} 3 x + 1 = x ^ { 4 } y \\ x \neq 0 \end{cases}$
Solve the fractional equation
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 3 } { x ^ { 3 } } } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 4 } }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 3 x + 1 } { x ^ { 4 } } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 3 x + 1 } { x ^ { 4 } } }$
$ $ Reverse the left and right terms of the equation (or inequality) $ $
$\color{#FF6800}{ \dfrac { 3 x + 1 } { x ^ { 4 } } } = \color{#FF6800}{ y }$
$\color{#FF6800}{ \dfrac { 3 x + 1 } { x ^ { 4 } } } = \color{#FF6800}{ y }$
$ $ If $ \frac{a(x)}{b(x)} = c(x) $ is valid, it is $ \begin{cases} a(x) = b(x) c(x) \\ b(x) \ne 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ y } \\ \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} 3 x + 1 = x ^ { 4 } y \\ \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ If $ f(x)^{n} \ne 0 $ is valid, it is $ f(x) \ne 0$
$\begin{cases} 3 x + 1 = x ^ { 4 } y \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ 그래프 보기 $ $
Graph
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo