# Calculator search results

Formula
Solve the equation
Calculate the differentiation
Graph
$y = \dfrac { 3 } { 2 } x$
$x$Intercept
$\left ( 0 , 0 \right )$
$y$Intercept
$\left ( 0 , 0 \right )$
$y = \dfrac{ 3 }{ 2 } x$
$x = \dfrac { 2 } { 3 } y$
 Solve a solution to $x$
$y = \color{#FF6800}{ \dfrac { 3 } { 2 } } \color{#FF6800}{ x }$
 Calculate the multiplication expression 
$y = \color{#FF6800}{ \dfrac { 3 x } { 2 } }$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { 3 x } { 2 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ 3 } \color{#FF6800}{ x }$
$2 y = \color{#FF6800}{ 3 } \color{#FF6800}{ x }$
 Move $x$ term to the left side and change the sign 
$2 y - 3 x = 0$
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } - 3 x = 0$
 Move the rest of the expression except $x$ term to the right side and replace the sign 
$- 3 x = 0 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
$- 3 x = \color{#FF6800}{ 0 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
 Organize the expression 
$- 3 x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
 Change the sign of both sides of the equation 
$3 x = 2 y$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ \div } \color{#FF6800}{ 3 }$
$x = 2 y \color{#FF6800}{ \div } \color{#FF6800}{ 3 }$
 Convert division to multiplication 
$x = 2 y \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$x = \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
 Simplify the expression 
$x = \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ y }$
$\dfrac {d } {d x } {\left( y \right)} = \dfrac { 3 } { 2 }$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ \dfrac { 3 } { 2 } } \color{#FF6800}{ x } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ \dfrac { 3 } { 2 } }$
 그래프 보기 
Linear function
Solution search results