Calculator search results
Formula
Solve the equation
Answer
See the solving process
Calculate the differentiation
Answer
See the solving process
Graph
See details
$y = \dfrac { 1 } { 2 } x - 1$
$x$-intercept
$\left ( 2 , 0 \right )$
$y$-intercept
$\left ( 0 , - 1 \right )$
$y = \dfrac{ 1 }{ 2 } x-1$
$x = 2 y + 2$
$ $ Solve a solution to $ x$
$y = \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } - 1$
$ $ Calculate the multiplication expression $ $
$y = \color{#FF6800}{ \dfrac { x } { 2 } } - 1$
$\color{#FF6800}{ y } = \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$2 y = \color{#FF6800}{ x } - 2$
$ $ Move $ x $ term to the left side and change the sign $ $
$2 y - x = - 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } - x = - 2$
$ $ Move the rest of the expression except $ x $ term to the right side and replace the sign $ $
$- x = - 2 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
$ $ Organize the expression $ $
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Change the sign of both sides of the equation $ $
$x = 2 y + 2$
$\dfrac {d } {d x } {\left( y \right)} = \dfrac { 1 } { 2 }$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ 그래프 보기 $ $
Linear function
Solution search results
Calculus
Check solution
7th-9th grade
Other
Check solution
Calculus
Check solution
7th-9th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture