# Calculator search results

Formula
Solve the inequality     Graph
$x + 9 \leq 4 x - 3$
$x + 9 \leq 4 x - 3$
Solution of inequality
$x \geq 4$
$x+9 \leq 4x-3$
$x \geq 4$
 Solve a solution to $x$
$x + 9 \leq \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 3$
 Move the variable to the left-hand side and change the symbol 
$x + 9 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq - 3$
$x \color{#FF6800}{ + } \color{#FF6800}{ 9 } - 4 x \leq - 3$
 Move the constant to the right side and change the sign 
$x - 4 x \leq - 3 \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq - 3 - 9$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq - 3 - 9$
$- 3 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 Find the sum of the negative numbers 
$- 3 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
 Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction 
$3 x \geq 12$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 12 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } \geq \color{#FF6800}{ 4 }$
 그래프 보기 
Inequality
Have you found the solution you wanted?
Try again