$x + 9 \leq \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 3$
$ $ Move the variable to the left-hand side and change the symbol $ $
$x + 9 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq - 3$
$x \color{#FF6800}{ + } \color{#FF6800}{ 9 } - 4 x \leq - 3$
$ $ Move the constant to the right side and change the sign $ $
$x - 4 x \leq - 3 \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \leq - 3 - 9$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq - 3 - 9$
$- 3 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$ $ Find the sum of the negative numbers $ $
$- 3 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$3 x \geq 12$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 12 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } \geq \color{#FF6800}{ 4 }$